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Multi-Output System Identification using
Evolutionary Programming

B.L. Andersen, W.C. Page, atn J.R. McDonnell
Naval Ocean Systems Center

San Diego, CA

Abstract identification. Fogel [21 has proposed the use of FP
in system identification for evolving ARMAX process

Evolutionary programming (EP) has been coefficients. Ilis investigations extend to
demonstrated to be an effective method of system simultaneous parameter and model structure
identification of single-input-single-output (SISO) estimation. This paper extends the work on SiS()
systems. This paper investigates the use of EP in systems; to SIMO systemns. The extension to multi-

system identification of single-input-multi-o0tput input, multi-output (MIMO) systems is obvious.
(SIMO) systems. EP is used to identify parameters Identification of a SIMO system could be
of a linear, time-invariant system. Specifically, this divided into identifying a set of SISO system transfer
paper examines the identification of SIMO systems functions between the input and each of the outputs.
whose mefsure.ments , co.nofin different amounts of However, each of these transfer functions would be
noise. A cost function is proposed to take into identified using only the measurements of its output
account disparate noisy observations, and not the full set of observations which contains

more information. Also, it is not clear how one
I. Introduction might combine these individual transfer tunctions

with parameter estimates of varying degrees of
System identification is the process of uncertainty into one combined system model that

developing an accurate model of a dynamic system. would be required to control all the states of the
This involves selecting the appropriate model system.
structure and choosing the model parameters which The remainder of this paper is organized as
optimize an objective function. The usual approach follows. Section II contains an overview of the EP
taken in system identification is to assume a model paradigm. Section III formulates EP for SIMO
structure based on the process physics and then to system identification and describes the model
determine the model parameters. Oftentimes, structure. Section IV presents a linear, time-invariant
nonlinear models are linearized so that an appropriate system that is used for cn, nniter experiments.
state space formulation may be used. Sectibn V discusses the results and Section VI

Typically, methods of system identification provides a summary of the results and conclusions.
involve minimizing the objective function using
gradient descent techniques. Use of the gradient may H. Evolutionary Programming
result in the identified parameters being only locally
optimal. Continuity constraints are another limitation EP is a parallel stochastic search technique
associated with pure gradient search techniques. A that maps natural evolution to an effective multi-agent
Kalman filter approach is given in I1] along with search strategy. This search technique is not based
cautions on its application to system identification, on gradient methods and is therefore not susceptible
Many algorithms have been proposed which attempt to entrapment in local minima. Search by simulated
to alleviate the inherent problems associated with evolution waýs first described by Fogel (31. [his

gradient methods. Recent approaches have included investigation follows the search strateiv oitline' in .
simulated annealing, genetic algorithms, neural Fogel 121 and described by the sequence below
networks and evolutionary programming. The latter C!iA&I

method has proven extremely successful for function I. Create the initial population P consisting of FAB

optimization. N parcnts.
Evolutionary programming (EP) has been 2, Assess the fitness (f each parent p, in the,

successfully applied to the problem of system populalion.
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and H is the measurement scaling matrix. The block
diagram for estimating parameters using EP is shown
in Figure 1.

The vectors to be evolved will consist of the

Uelements of the F and G matrices. The H
- -- - --- - (measurement) matrix will not be evolved becaue

Y finding all three of the matrices is an underdefined
problem since an infinite number of combinations of

F, G and H matrices apply to the same system
_ dynamics For this reason, the measurements will be

G z H assigned to the first I states of the system. This
results in an H matrix of the form

H = [I,. 1 01..(.-]

Given this formulation, the method of
applying EP to the identification problem is

Figure 1. Evolutionary programming straightforward. The remaining issues to be resolved
parameter estimation block diagram. are the mutation strategy and the objective function.

Two mutation strategies were investigated
The first incorporates a standard deviation of the

3. Mutate each element in the population by a mutation for each vector that is linearly proportional
N(O,o') random variable, where o is to the fitness score as suggested by Fogel (2]. This
proportional to the fitness. results in the size of the mutations decreasing as the

4. Assign a new fitness score to each element population approaches the optimum value. In
of the population. addition to ensuring convergence, this strategy also

5. Hold a stochastic competiticn between the assures an effective search by allowing larger
members of the population, mutations for elements that have poor fitness scores.

6. Rank the members of the population Atmar [4] suggests a variety of mechanisms to
according to the results (number of "wins") accelerate the search process.
of step 5.. The second mutation strategy investigated is

7. Repeat step 3 with the highest ranked N basedlon the number of iterations. The mutation of
members from the population. any element in the vector can be described by the

perturbation
This algorithm is applied to system identification in
the following section. 5 = pe"•

M11. EP for System Identification where ju is a N(O,o) random variable (r.v.), r is a
U[O,1] r.v., a is a constant and k is the generation

The linear time-invariant SIMO structure is number. This mutation is a function of the number
assumed to be of the form of iterations only. A random walk is maintained over

a high number of generations while still pre-serving
x(k+ 1) Fx(k) +Gu(k) the capability of infinitesimal perturbations to achieve

optimum values as k increases. Reasonable results
were obtained using this mutation strategy for

y(k) -- HX(k) +i(k) cptimizing mobile manipulator configurations 151.
The objective function must be carefully

where x(k) is the state vector of length n, u(k) is the chosen for this search. Not only will the
input, y(k) is the vector of measurements of length 1, measurements oener'!ly . ,f differ'.':c -Ilits. hut ill,,
v(k) is the vector of Nk(,,a,,) i,,v~e.ct no.se. v7 is amount ot confidence in each measurerent may
the system matrix, G is the input weighting matrix differ due to sensor characteristics. A cost function



has been formulated to take into account disparate IV. Simulated System
sensor noise and the difference between state
estimates and observations. The error vector between A simple second-order system based on
observation and estimate is given by spring-mass-damper dynamics was used for computer

experiments. Parameters were chosen so that the
Y Y Y-Y system was critically damped. The continuous state

equations can be written as
where y is the observation and 5 is the estimate. The
cost function incorporates sensor uncertainty (noise)7 i
using the diagonal standard deviation matrix . i -2B + u

0 0

0-1y+-[ o] ,

a 2

The equivalent discretized state-space formulation.
assuming a zero-order-hold and a sample rate of

0 0- T=0.05 see, is given by
oo..IKJ 0-9988 0.04761 f0.0012]

x(k+l1) 0.99880.0476 0"937x(k) +. _0.-0416] u(k)

where a, corresponds to the noise characteristics of _0.047 [ J0.0476
the I/ sensor. The cost associated with each
parameter estimate can be described as

I ~T~ y(k) =[ }x(k) + v(k)
n

where the variances are selected according to sensor The forcing function is ensured to be persistently
specifications, n is the length of the error vector and exciting by defining u(k) as an r.v. with a uniform

R -- T or the identity matrix I depending on the distribiution. The system was propagated forward
experiment. Using R = 111-0 accomplishes two 100-200 time steps for each simulation from an initial
things. First, it allows the cost to be a dimensionless state randomly chosen from a U[-1, 1] distribution.
quantity. Second, it scales each measurement by the
amount of confidence in its accuracy. If the V. Results
measurement is noisy, its contribution to the cost
function is reduced since the prediction errors could Simulations were conducted using both
be due primarily to measurement noise. If an mutation strategies. In general, the second mutation
observation is relatively noise-free, its contribution to strategy outperformed the first. The reason for this
the cost function will be large since the error is due is still under investigation. The state variables had to
primarily to estimation errors, assuming the model be constrained to prevent numeric overflow. This is
structure is correct. For these trials, it is assumed not unreasonable given that the time integration of an
that the variances are constant but not necessarily unstable system is not bounded. However, it does
equal. If the variances are equal, then the cost have implications in system identification of unstable
function is simply scaled by this magnitude. Using plants.
R = I and scaling the cost function will yield the The first experiment for the second mutation
same iesults. strategy used numerically equal measurement n',i:

terms with N(0,0.05) statistics and (t-0.01. The
resulting parameters are given in Table I under
experiment I. The average percentage error for all



parameters is approximately 8%. addressed. First, the model igntored process noise,
The magnitude of the forcing function was the terms that account for differences from the actual

increased tenfold in an attempt to obtain better system dynamic equations. Second, this work assumed that
identification. The parameters resulting from this the order of the system is known. To identify the
experiment are given in Table I in the experiment 2 order of the model as well as the parameters, a multi-
column. As expected, these parameters are have a dimensional equivalent of Akaike's information
lower overall average error than those obtained in criterion (AIC) or minimum defining length (MDL)
experiment 1. For this case, the average overall principle similar to that used by Fogel [6] for neural
parameter error is roughly 3.14%. networks must be developed.

Figure 2 shows the mean and best population The application of Ell for adaptive control is
scores using the second mutation strategy. The cost readily apparent. Issues to be addressed in using EP
function is simply the mean sum squared error (MSE) for adaptive control pertain to the bandwidth of the
of both observations. At roughly 300 iterations the process being controlled. That is, of course,
identification process converged. This run had assurmng a traditional adaptive control architecture.
equivalent noise statistics on each measurement. EP could be implemented in an arrangement such that
Figure 3 illustrates the convergence of the first system identification would not have to be explicit.
parameter (f,) in the highest ranked F matrix. The
other parameters converge in a similar fashion.

An experiment was conducted to compare References
the effect of the two cost functions using the second
mutation strategy. The standard deviation of the [I] B.D.O. Andersen and J.B. Moore, Optimal
position measurement noise was 0.01 and the Filtering, Prentice-Hall, 1979.
standard deviation of the velocity measurement noise
was 0.05. In both cases a was set at 0.05. The best [2] D.B. Fogel, System Identification through
values of the parameters are shown in Table I. The Simulated Evolution: A Machine Learning Approach
parameter values under the experiment 3 heading are to Modeling, Ginn Press, Needham, MA, 1991.
for the cost function that included the variance term
(R = (ITO). The parameter values given under the [31 L.J. Fogel, A.J. Owens, and M.J. Walsh,
experiment 4 heading are for R equal to the identity Artificial Intelligence through Simulated Evolution.
matrix. The experiment that incorporated a cost John Wiley and Sons, New York, 1966.
function without the variance term unexpectedly had
better results than the experiment which incorporated [4] W. Atmar,"Natural Processes which Accelerate
a confidenc, weighting term. The reasons for this the Elolutionary Search", IEEE Proc. of Twenty-
result are still being investigated. Fourth Asilomar Conf. on Signals, Systems, a,,d

Computers, 1990.
VI. Conclusions

[5] J.R. McDonnell, W.C. Page, and B.L.
EP is a powerful search technique that can Andersen,"Configuration Optimization for Platform-

be applied to system identification. This research has Manipulator Systems using Evolutionary
demonstrated that EP can be extended to identify Programming", Proc. AMSE Conf. on Neural
linear SIMO systems of known order. The extension Networks, San Diego, 1991.
to identification of MIMO systems is obvious. It is
also clear that the scaling of the cost function must be [6] D. B. Fogel,"An Information Criterion for
chosen carefully to account for disparate sensor data Optimal Neural Net Selection", IEEE TramL. on
and measurement noise. The results given in this Neural Networks, Vol. 2, No. 5, 1991.
work have yet to be statistically verified and therefore
should not be generalized. Investigations on the
algorithmic properties of EP are being continued for
validation in further experiments.

The formulation described here is a general
one for the identifictaion of state-space models, but
there are still additional considerations to be
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Figure 2. The mean and minimum (best) Figure 3. Evolution of parameter f,.
population costs.

Final Best Value Statistics
Para- Actual

meters values 11 Experiment 2' Experiment 3y Experiment 41 Experiment

value %error value %error value %error value %error

fi 0.9988 0.9965 0.23 0.9986 0.02 1.0193 2.05 0.9973 0.15

f12 0.0476 0.0527 10.7 0.0480 0.84 0.1015 113.2 0.0422 11.3

f2, -0.0476 -0.0449 5.67 -0.0481 1.05 -0.0745 56.51 -0.504 5.88

f22 0.9037 0.90163 0.23 0.9033 0.04 0.8315 7.99 0.9062 0.28

g1 0.0012 0.0009 25.0 0.0010 16,7 -0.0152 1367 0.0009 25.0

g2  0.0476 0.0507 6.51 0.0477 0.21 0.0480 0.84 0.0440 7.56

Table 1. Comparison of final value results of experiments and actual parameters.


